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Abstract.

The modern investigation of clusters, for which 1 ≪ N ≪ ∞ requires a

generalization of the thermodynamics developed for infinite systems. For instance,

in finite systems, phase transitions and phase coexistence become ill defined with

ambiguous signals.

The existence of phase transitions in nuclear systems, in particular of the liquid-

vapor kind, has been widely discussed and even experimentally claimed. A consistent

and unambiguous approach to this problem requires a connection between finite

systems and the corresponding infinite systems. Historically, this has been achieved

at temperature T = 0 by the introduction of the liquid drop model and the extraction

of the volume term, which is a fundamental quantity of nuclear matter.

The present work extends this approach to T > 0, by determining the liquid-

vapor coexistence line and its termination at at critical point. Since there is no

known experimental situation where a nuclear liquid and vapor are in coexistence, we

establish a relationship between evaporation rates and saturated vapor concentration

and characterize the saturated vapor with Fisher’s droplet model. We validate this

approach by analyzing cluster concentrations in the Ising and Lennard-Jones models

and extracting the corresponding first order coexistence line and critical temperature.

Since the vapor of clusters coexists with a finite liquid drop, we devise a finite size

correction leading to a modified Fisher equation.

The application of the above techniques to nuclear systems requires dealing also

with the Coulomb force. Nuclear cluster evaporation rates can be corrected for

Coulomb effects and can be used to evaluate the cluster concentrations in the “virtual”

equilibrium vapor. These cluster concentrations, determined over a wide temperature

range, can be analyzed by means of a modified Fisher formula. This leads to the

extraction of the entire liquid-vapor coexistence line terminating at the critical point.

A large body of experimental data has been analyzed in this manner and the liquid-

vapor phase diagram of nuclear matter has been extracted.
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1. Prolegomenon

This article is not a review of nuclear multifragmentation and of related dynamical or

statistical models. A variety of reviews on this subject is available for a thorough

description and analysis of the field [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Neither is it

a review of theories of phase transitions in nuclei and small systems. Rather, it

is a coherent, systematic approach towards the extraction of the liquid-vapor phase

coexistence diagram for infinite, uncharged, symmetric nuclear matter from a variety

of nuclear reactions. It is also an illustration of the hurdles one encounters in such an

effort, such as finite size, Coulomb effects and lack of existence of stationary phases in

equilibrium coexistence in the experimental environment.

2. Introduction

Phase transitions have a way of catching the attention of our collective scientific

unconscious. The dramatic changes in structure, density and other parameters at

times overwhelm our better judgement. We know, but forget, that (at least for first

order transitions) these transitions can be described (and predicted) on the basis of

the thermodynamic characterization of each individual infinite phase simply with the

requirement of equal thermodynamic potentials (e.g. temperature, chemical potentials,

etc.). No phase-phase interaction is needed.

It is a case of myth hiding triviality.

The advent of mesoscopic physics made the waters murkier by introducing the

additional complication of finiteness. So it appeared that finite size effects multiplied

the general thermodynamics of infinite systems into an infinity of thermodynamics, one

for each finite system.

In nuclear physics this complication was partially avoided. On one hand, we dealt

from the beginning with finite nuclei. On the other, we understood the danger of

long range forces, such as the Coulomb force. Indeed, it was soon learned how to

move elegantly from finite to infinite systems through the liquid drop model expansion

[11, 12, 13].

In this way, to do justice to our forefathers, some properties of zero temperature,

symmetric, uncharged nuclear matter were quickly determined from the volume term

of the liquid drop expansion. The existence of a dilute gas-like phase at temperatures

above zero became soon obvious as “hot nuclei” started evaporating neutrons under the

hands of experimentalists [14, 15]. Thus, given the apparent existence of two phases, it

was natural to inquire about their possible equilibrium coexistence.

Phase diagrams for ordinary physical/chemical systems are simple and fundamental

road maps to guide one through the sometimes complicated coexistence of several

“phases” in heterogeneous systems.

Gibbs’ description of equilibria in such systems leads naturally to phase diagrams.

The number of possible coexisting phases and the latitude of their coexistence is distilled
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Figure 1. The liquid-vapor portion of the phase diagram of water (H2O). The data

was obtained from the NIST data base [16].

in the Gibbs “variance” equation

ν = η − φ + 2 (1)

where ν, the variance, is the number of thermodynamic variables that must be specified

in order to characterize the system. The number of independent components is η and

the number of coexisting phases is φ.

For water (η = 1), let us consider only the liquid-vapor (l-v) transition:

H2Ol → H2Ov (2)

forgetting for the moment that the system admits several solid phases. Figure (1) shows

how the pressure, temperature plane (p, T ) is divided by the coexistence line. To its

right is the region of a single phase (vapor), where the variance is ν = 2 because we

must specify two coordinates (p and T ) in order to characterize the state of the system.

Similarly, to the left of the coexistence line is the region of the liquid, and ν = 2 for

the same reasons. However, along the coexistence line both phases are present and

ν = 1. Thus a single variable, either T or p, completely fixes the state of the system.

An equivalent and perhaps more familiar temperature–density (T , ρ) diagram is also

shown in Fig. 1.

There is no single phase transition temperature. Boiling, a particular way that the

system has to achieve coexistence, occurs at a temperature completely dependent on the

applied pressure. Similar considerations can be made about the solid-liquid coexistence

and the “melting” point, which also completely depends on the pressure.

After this parenthesis, we return to nuclear matter, and its definition. It has been

long known that nuclei can be considered as charged droplets of a Van der Waals like

fluid. Their binding energy EA, or mass, can be written in terms of a volume term, a
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surface term, a symmetry term and a Coulomb term as follows [11]

EA = −aV A + asA
2/3 + asym

(N − Z)2

A
+ aC

Z2

A2/3
+ . . . (3)

where: aV is the volume or bulk energy coefficient; A is the number of nucleons; as is the

surface energy coefficient; asym is the symmetry energy coefficient; N is the number of

neutrons in the nucleus; Z is the number of protons in the nucleus (and A = N +Z); and

aC is the Coulomb energy coefficient. For alternative formulae see references [17, 13].

Equation (3) can be used in two ways: on one hand, it can predict the binding

energies of specific nuclei with an accuracy of about 1% (. 10 MeV), and with shell

corrections, easily obtainable from the shell model, binding energies accurate to within

1 MeV can be obtained [18, 19, 20]. On the other hand, one can discard all the terms

other than the first and obtain the binding energy of the infinite, uncharged and N , Z

symmetric system which we call bulk nuclear matter, a condensed fluid which, in many

ways should resemble a Van der Waals liquid [21].

This information, together with the equilibrium density obtained from nuclear

radii (also directly inferable from the Coulomb coefficient [12]) gives us a satisfactory

“thermodynamical” characterization at zero temperature.

The Van der Waals features of this nuclear fluid immediately pose the question

about its properties at higher temperatures. Is there a vapor-like phase? Can it coexist

with the condensed liquid-like phase and over what temperature range? Is there a

critical temperature at which the distinction between the two phases disappears [22]?

In other words, can one obtain a pressure-density-temperature (p,ρ,T ) phase diagram

analogous to those shown in Fig. 1? This is our quest.

Let us consider the possibility of a vapor phase. It has long been known that an

excited nucleus could emit neutrons with a thermal kinetic energy spectrum of the form

P (Ek) =
16π

h3
mnσne−

Bn

T Eke
−

Ek

T (4)

where Ek is the kinetic energy of the evaporated neutron; h is Planck’s constant; mn is

the neutron mass; σn is the neutron capture inverse cross section; Bn is neutron binding

energy; and T is the temperature [14, 15]. This expression is a re-writing of Weisskopf’s

formula which is, incidentally, identical to that for the thermionic emission of electrons

from a hot filament and, apart from spin degeneracies, to that of the evaporation of

molecules from the surface of a liquid.

The naming of this expression the “Weisskopf evaporation formula” indicates that

the analogy with the liquid-vapor phase transition was already in the mind of the

discoverer (and of his referees, if he had any). In fact, the absolute evaporation rate is

equal, at equilibrium, to the condensation rate, which depends on the saturated vapor

concentration. Therefore (barring Coulomb effects) “evaporation” implies the existence

of a vapor phase, whether this phase is actually present or not. This is a key point,

essential to achieving our goal. It is also a restatement of the “trivial” nature of first

order phase transitions.
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From eq. (4) which gives the rate of emission per unit surface, it is possible to

obtain the pressure of the neutron vapor in equilibrium with a nucleus

p =

(

2πmnT

h2

)3/2

2Te−Bn/T . (5)

But what about the observed emission of protons or of heavier clusters? Do they belong

to the vapor phase as well? This problem will be dealt with later on.

3. Thermodynamic frugality

If one is interested in calculating the pressure of the vapor in equilibrium with bulk

nuclear matter, one can use the Claperyon equation

dp

dT

∣

∣

∣

∣

coex

=
∆Hm

e

T∆V m
(6)

where ∆Hm
e is the molar enthalpy of evaporation and the change in molar volume

∆V m ≃ V m
v is taken to be the molar volume of the vapor at the ideal vapor

approximation. One then obtains

d ln p

dT

∣

∣

∣

∣

coex

= −
∆Hm

e

T 2
(7)

and taking the enthalpy of evaporation (work function) to be ∆Hm
e = −aV + T one

finally gets

p ≃ p′e−aV /T (8)

where aV is the volume term in the liquid drop model and p′ is a slowly varying function

of T . This should be an excellent guess, rather accurate at relatively low temperatures,

where the vapor may be considered ideal and dominated by monomers.

All this is, in fact, rather trivial, requiring only knowledge of the “work function”

aV (which we get from the liquid drop) and of thermodynamics.

This much was implicitly known and could have been made explicit before 1940.

Compare now equation (8) with the scaling expression used by Guggenheim [23] to fit

the data in the left plot in Fig. 2 for a variety of Van der Waals systems

p = pc exp

[

−
∆Hm

e

T

(

1 −
T

Tc

)]

(9)

where pc and Tc are the critical pressure and temperature respectively. Equations (8)

and (9) are obviously equivalent.

So, it appears that in order to obtain the full phase diagram of nuclear matter

we must obtain the critical parameters from experiments. In order to obtain such

parameters we should use the properties of the gas phase (vapor) in equilibrium with

nuclear matter at T > 0. Unfortunately, we do not have access to such a system.

However, we have the possibility of studying particles and clusters “evaporated” from

hot finite nuclei. From these observations we may hope to extract the properties of the

saturated vapor.

Three problems (at least) are to be overcome:
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Figure 2. The reduced pressure as a function of the inverse of the reduced temperature

(left) and the reduced density as a function of reduced temperature (right), à la

Guggenhiem [23, 24]. Data for eight different fluids fall on the same curve. The data

for the fluids was obtained from the NIST data base [16]. The pressure-temperature

curve (left) is from reference [24] and the temperature-density curve (right) is from

reference [23].

(i) no vapor is ever found in equilibrium with a hot nucleus, but (at least under most

experimental conditions) emission (evaporation) occurs in vacuum [25];

(ii) the finiteness of nuclei affects the rate of emission of fragments [26].

(iii) Coulomb effects the relative abundance of fragments through the heights of the

Coulomb barrier [27];

We address and overcome all these problems below.

4. Characterization of the saturated vapor phase through cluster

distributions

Where and how can we obtain information about the vapor phase? Heavy ion

reactions at intermediate and high energy produce abundant fragments whose energy

and mass/charge distributions show strong signals of thermalization [28]. In particular,

individual fragment multiplicities over a broad range of excitation energies can be

reproduced by a Poissonian distribution (reducibility) [4] which indicates that the

probability of emitting n fragments can be “reduced” to the probability of emitting just

one. In turn, this elementary probability scales with excitation energy as a Boltzmann

factor (thermal scaling), giving rise to remarkably linear Arrhenius plots [29, 30, 4]. See

Figure 3.

Thus the evidence points to stochastic, independent, thermal fragment emission, and

the connection of such a kind of multifragmentation with compound nucleus emission

seems natural. Multifragmentation in these cases may be just the continuation of
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Figure 3. Left: The average yield as a function of the inverse of the square root of the

transverse energy. The symbols show experimental data points while the solid lines

show fits to the data using a Boltzmann form. Right: The excitation functions for

carbon (left) and neon (right) emission. The symbols show experimental data points

and the solid curves are Poisson fits. See reference [28] for further details.

compound nucleus emission at high energies, unfortunately with the added complication

of uncertainties regarding the number and size of the sources, their excitation energies

and their angular momenta.

In low energy compound nuclear reactions we have observed and characterized

thermal emission (evaporation) of nucleons and clusters of nucleons [29, 30, 4]. The

tendency of nucleons (monomers) to condense into clusters reflects the non-ideality of

the vapor and contains information regarding the evolution of the vapor itself along the

coexistence curve towards criticality.

We believe that, in nuclear physics, this is the royal avenue toward the extraction

of the phase diagram, because cluster emission in nuclei or thermalized nuclear systems

is readily and quantitatively observed.

The cluster size distribution in the (saturated) vapor can be adequately described

in terms of the independent physical cluster models where the non-ideality of the vapor

is taken to be exhausted in the formation of clusters that otherwise behave ideally

[31, 32, 33, 34].

4.0.1. The physical cluster model Physical cluster theories of non-ideal fluids assume

that the monomer-monomer interaction is exhausted in the formation of clusters, and

that the resulting clusters behave ideally (i.e. they do no interact with each other)

[31, 32]. Clusters of a given number of constituents A can be characterized by their
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mass mA, a chemical potential (per constituent) µ and a partition function qA(T, V )

that depends on the temperature T and volume V of the fluid. Because of the ideality

of the fluid of clusters, the pressure and density are readily determined. The pressure p

is

p =
T

V

∞
∑

A=1

qA(T, V )zA (10)

and the density ρ is

ρ =
1

V

∞
∑

A=1

AqA(T, V )zA (11)

where z is the fugacity z = eµ/T . The concentration of size A clusters is then

nA(T, z) =
qA(T, V )zA

V
. (12)

4.1. Fisher’s theory

Fisher’s contribution to physical cluster theory was to endow clusters with a surface

energy and to provide an estimate for the entropic part of the free energy associated

with the formation of a cluster [33, 34].

Fisher started by writing the energetic contribution to the free energy based on the

liquid drop expansion

EA = EV + Es (13)

where EV is the volume (or bulk) binding energy of the cluster which is taken to be

EV = a′

V V ≃ aV A. (14)

Here V is the volume of the cluster; a′

V is the volume energy coefficient in terms of V ;

and aV is the volume energy coefficient in terms of A. The term Es is the loss of binding

due to the surface s of the cluster. For clusters this is usually taken to be

Es = a′

ss ≃ asA
d−1

d (15)

where s is the surface area of the cluster; d is its dimensionality; a′

s is the surface energy

coefficient in terms of s; and as is the surface energy coefficient in terms of A
d−1

d . The

surface energy is written more generally as Es = asA
σ where σ is an exponent describing

the relationship between surface and volume of the cluster. One intuitively expects that

σ ≈ 2/3 for three dimensional systems.

Fisher speculated that the entropic contribution to the free energy is dominated

by the number of possible shape configurations gA for a cluster of size A. For large

clusters, over some small temperature range the most probable or mean surface of a

cluster should be [33, 34]

s ≃ a0A
σ (16)



The experimental liquid-vapor phase diagram of bulk nuclear matter 9

where a0 is some constant of proportionality. The asymptotic number of shape

configurations is written as

gA ≃ g0A
−τebsAσ

(17)

where g0 is a normalization constant, τ is an exponent that arises from studies of

combinatorial problems [33, 34] and bs is the surface entropy coefficient. The entropy

of a cluster becomes:

SA = ln gA = ln g0 − τ ln A + bsA
σ. (18)

Fisher’s insight was to recognize that a cluster’s energy and entropy share, to leading

order, the same dependence on A, namely they are linear with Aσ, which makes the free

energy of all cluster go to zero at the same “critical” temperature, as can be seen below.

Now, the partition function of a cluster is

qA(T, V ) = V

(

2πmAT

h2

)
d

2

exp

(

−
EA − TSA

T

)

. (19)

Combining equations (12), (13), (14), (15), (18) and (19) gives the number density of

A as

nA(T ) = q0A
−τ exp

(

∆µA

T

)

exp

(

−
asεA

σ

T

)

(20)

where q0 is a normalization constant, ∆µ is a measure of the distance from coexistence

in terms of the chemical potential and

ε = 1 − T
bs

as

=
Tc − T

Tc

(21)

with the critical temperature given by

Tc =
as

bs

. (22)

At saturation, ∆µ = 0, so there are no terms that depend on A to the first power.

4.1.1. Thermodynamic quantities from Fisher’s model In order to obtain thermody-

namic quantities such as pressure p and density ρ we combine the general equations for

pressure and density for physical cluster theories with Fisher’s estimate of the cluster

partition function. Then, along the coexistence line, i.e. ∆µ = 0, we have

pcoex = T
∞

∑

A=1

q0A
−τ exp

(

−
asεA

σ

T

)

(23)

and

ρcoex =

∞
∑

A=1

q0A
1−τ exp

(

−
asεA

σ

T

)

. (24)

At the critical point we have

pc = Tc

∞
∑

A=1

q0A
−τ (25)
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and

ρc =
∞

∑

A=1

q0A
1−τ . (26)

Taking ratios from equations (23) to (26) we obtain the reduced pressure

pcoex

pc
=

T
∑

∞

A=1 A−τ exp
(

−asεAσ

T

)

Tc

∑

∞

A=1 A−τ
(27)

and the reduced density

ρcoex

ρc
=

∑

∞

A=1 A1−τ exp
(

−asεAσ

T

)

∑

∞

A=1 A1−τ
(28)

which have the advantage of being free of the constant q0.

Thus we see how to infer the phase diagram from cluster distributions. We put

this to the test below.

4.2. Application of the cluster approach to mathematical models

The models in the following sections are well understood and their phase diagrams

known. We will try to derive the phase diagrams with the method illustrated above.

As an aside, we note that thermodynamicians would not go through the trouble of

constructing a phase diagram based on clusters as we do below. They would simply

measure the pressure, density and temperature of their fluid. However, measurements

of temperature, density and pressure for a nuclear fluid are problematic. On the other

hand, the measurement of clusters in nuclear reactions has been easily achieved and has

a long tradition. Thus our interest in using clusters to construct the phase diagram.

4.2.1. The Ising (lattice gas) model The Hamiltonian of the Ising model has two terms:

the interaction between nearest neighbor spins S on a fixed lattice and the interaction

between the spins and an external applied field Hext:

H = −
∑

i,j

Ji,jSiSj − Hext

∑

i

Si (29)

where the subscripts i and j label lattice sites and Ji,j is the strength of the spin-spin

interaction which is equal to J if i and j are neighboring sites with aligned spins and

equal to zero if not. For dimensions greater than or equal to two, in the absence

of an external magnetic field, the system exhibits a first-order phase transition for

temperatures up to the critical point at which it exhibits a continuous phase transition.

The zero-field Ising model is isomorphous with the lattice gas model at coexistence

[35, 36]. The down spins are mapped to unoccupied sites in a lattice gas and the up

spins are mapped to occupied sites. The phase transition in the Ising model is then

analogous to a liquid-vapor phase transition.

The results shown here are taken from calculations performed via a code using

standard Monte Carlo techniques [37]. After the system was thermalized, geometric

clusters, i.e. nearest neighbor like spins, were identified and then the Coniglio-Klein
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Figure 4. Left: The liquid phase. Right: The vapor phase. The gray spheres show

the particles. Clusters are shown by particles connected with gray cylinders. Lines

show the edges of the cubic container.

algorithm [38] was used to break the geometric clusters into physical clusters. All

calculations were performed at zero external field (Hext = 0). The lattice contained 503

spins, and periodic boundary conditions were adopted to minimize finite size effects.

We used of the Swendsen-Wang algorithm and Coniglio-Klein clusters to insure that the

clusters analyzed in this work are most closely related to the physical clusters observed

in fluids [39, 40].

4.2.2. The Lennard-Jones (molecular dynamics) model In addition to the Ising model,

the same phase transitions and cluster scaling were studied in a system of particles

interacting though the Lennard-Jones pairwise potential. In this model, the potential

energy of two particles separated by a distance of rij is

VLJ(rij) = −4ǫ

[

(

rLJ

rij

)

−6

−

(

rLJ

rij

)

−12
]

. (30)

The system is characterized by two parameters ǫ and rLJ which are measures of the

characteristic energy and distance, respectively. This system exhibits a first-order

phase transition at low temperatures, which terminates at a critical temperature with

a continuous transition.

The Lennard-Jones model is not constrained to a lattice as is the Ising model. This

makes the system more analogous to physical systems which we wish to study, be they

atomic or nuclear systems.

An efficient means of studying coexistence in such a system is the Gibbs ensemble

method [41]. The premise of such a calculation is that the two phases do not need to
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ρ 0.5

Figure 5. Left plot: the scaling of Eq. (32) for d = 3 Ising model on the simple cubic

lattice of side L = 50 [43]. Here c0 = as. Right plot: the density as a function of

reduced temperature. The open circles show the density obtained from clusters via

Fisher’s theory and the solid line shows the actual density. See text for detailes

be in physical contact to study coexistence. Instead, two systems are made, one being

of higher density and the other low. A Monte Carlo simulation is performed at a given

temperature, allowing the two systems to exchange volume and particles, establishing

equal pressures and chemical potentials in the two containers. No prior knowledge of

the coexistence density, pressure, or chemical potential is needed.

For this study a system of 4,800 particles was considered. The containers of the

two phases were cubic and approximately equal in volume, resulting in a length of about

20rLJ . Six temperatures were considered in the range of 0.76 ≤ T/Tc ≤ 0.95. Figure 4

give a sample configuration of the system.

Clusters were defined using the Hill algorithm [42]. This approach is based not only

on geometric constraints, but also considers the momentum space of the constituents.

Two nearby particles i and j are bound together if
m

4
(−→vi −

−→vj )
2 ≤ −VLJ(rij), (31)

where m is the mass of a particle and −→vi is the velocity of the ith particle.

4.3. Cluster scaling from Fisher’s theory

4.3.1. Scaling of the Ising cluster distributions We start by considering the observed

cluster concentrations in terms of Fisher’s theory given by Eq. (20). Working at

coexistence (∆µ = 0) and dividing both sides by the power law factor, we obtain:

nA(T )

q0A−τ
= exp

(

−
asεA

σ

T

)

. (32)
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- theoretical values L = 50 calculations [43]

Tc 4.51152 ± 0.00004 [44] 4.52 ± 0.01

σ 0.63946 ± 0.0008 0.723 ± 0.008

τ 2.209 ± 0.002 2.30 ± 0.08

Table 1. Fit results for the d = 3 Ising model with L = 50 on the simple cubic lattice.

The values of σ and τ are determined via exponent scaling relations: β = (τ − 2) /σ

and γ = (3 − τ) /σ [33, 34] with β = 0.32653 ± 0.00010 and γ = 1.2373 ± 0.002 [45].

The deviation observed in the fitted result for σ arises from the unaccounted curvature

of the clusters [46].

- theoretical values Gibbs

Tc 1.3120 ± 0.0007 [48] 1.368 ± 0.002

σ 0.63946 ± 0.0008 0.744 ± 0.002

τ 2.209 ± 0.002 2.199 ± 0.005

Table 2. Fit results for the Lennard-Jones system. The deviation observed in the

fitted result for σ arises due to the curvature of the clusters [46].

Thus, plotting the logarithm of the left hand side versus the argument of the exponential

on the right should yield a straight line irrespective of the temperature T or cluster size

A. Figure 5 shows this type of scaling and data collapse in the Ising model cluster

yields [43] and Table 1 gives the parameters obtained in the fit. These results show

that the cluster analysis successfully yields the parameters necessary to construct the

coexistence curve up to the critical temperature.

In order to further test the results above, we examine the density of the vapor

ρv,l

ρc
=

1 ± |M |

2
(33)

which we determine using Eq. (28). Putting the values of σ, τ , as and Tc (listed in

Table 1 and determined from fitting clusters on the d = 3 Ising lattice shown in Fig. 5

[43]) in Eq. (28), Eq. (33) gives the vapor branch of the density curve. Due to the

symmetry of the Ising model, the points showing the liquid density ρl are reflections

about ρc = 1/2. The results are shown as the open circles in the right plot of Fig. 5.

These results compare well with a parametrization for the density determined using

a functional form of M(T ) taken from the literature [47] and shown as a solid line in

the right plot of Fig. 5. The agreement between the density values calculated via

Eq. (33) and the ρ (M (T )) parameterization for 0 < T < Tc suggest that the ideal gas

assumptions in Fisher’s theory allow for an accurate description of the system even up

to densities as high as ρc.

4.3.2. Scaling of the Lennard-Jones cluster distributions Now we examine the cluster

distributions observed in the simulations of the Lennard-Jones system described above.
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Figure 6. Left plot: the scaling of Eq. (32) for Lennard-Jones model Gibbs ensemble

calculations. Here c0 = as. Middle: the reduced density as a function of reduced

temperature. Right: the reduced pressure as a function of the inverse of the reduced

temperature. The open circles show estimates based on Fisher’s droplet model. The

solid line is from the NIST data [49].

As with the Ising model, the cluster distributions can be fit with Eq. (32) as shown in

figure 6 and yields a value of Tc that agrees well with those in the literature as shown

in Table 2.

As in the case with the Ising model, the value of σ is larger than that expected

for its universality class. This consistent inconsistency stems from the fact that smaller

clusters are being used for the fitting, whereas σ is a well defined quantity for appreciably

larger clusters.

The reduced phase diagrams of the system are constructed by using equations (27)

through (28) using the parameters listed in Table 2. These results are shown by the

solid red squares in Fig. 6. Figure 6 also shows the reduced phase diagram determined

by more traditional means [49]. The extracted phase diagrams are accurate at lower

temperatures, but differ somewhat near the critical temperature.

5. Finite size effects: the complement method

Finite size effects are essential in the study of nuclei and other mesoscopic systems for

opposite, but complementary reasons. In modern cluster physics, the problem of finite

size arises when attempts are made to relate known properties of the infinite system to

cluster properties brought to light by experiment [50]. For nuclear physics, the problem

is the opposite: finite size effects dominate the physics at all excitations and the challenge

lies in generalizing specific properties of a drop (nucleus) to the properties of uncharged,

symmetric infinite nuclear matter. This goal has been achieved already for cold nuclei

by the liquid drop model as discussed previously.

The finite size effects of having a liquid drop embedded in its saturated vapor are

described by the Gibbs-Thomson equation [51]. Given a drop of size A0, the pressure of

the vapor, p, is greater than that of the coexistence pressure of a system with a planar
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surface, pp, by the relation

p

pp

= exp

(

σasA
σ−1
0 ǫ

T

)

= exp

(

∆µfs
T

)

. (34)

Here, ∆µfs represents the shift in chemical potential as compared to the bulk coexistence

chemical potential.

However, is a drop in “equilibrium” with its vapor truly stable? Consider a drop

embedded in a bulk amount of vapor at the fixed equilibrium pressure given by Eq (34).

Naturally, the drop size will fluctuate in size. If some material evaporates from the

drop, the smaller drop will demand a larger external pressure. As a result, the drop

will evaporate more and more until it disappears completely. Conversely, if some

condensation occurs and the drop were to grow, it would require a lower pressure.

As a result, the vapor continue to condense on the drop until it becomes a bulk sample

of liquid. In this sense, a droplet is seen to be a state of unstable equilibrium.

A droplet may, however, exhibit stable equilibrium in a finite system which

conserves the total number of particles. As fluctuations make the drop smaller in such

a system, not only does the internal pressure of the drop increase, the surrounding

vapor will also increase in pressure with the increase of particles into the vapor phase.

Likewise, if the drop grows in size, the vapor pressure decreases with the transfer of

particles into the liquid. Thus, the drop will evolve in size until a stable equilibrium is

achieved.

One should notice that when we speak of finite size effects, we mean to draw

attention to the finite size of the drop. It should not be confused with the concept of

finite size corrections associated with the volume of the system studied in simulations

[52]. These finite size corrections associated with the liquid drop have no relation to box

size; surely, a compound nucleus will exhibit these finite size corrections, but there is

no box in sight. The finite size effects due to the box size are present in our simulations

but are minimized by choosing a large volume and periodic boundary conditions.

In this section, we present a general approach, which we call the complement

method [26], to deal with finite size effects in phase transitions and illustrate it for

liquid-vapor phase coexistence. The complement method consists of evaluating the

free energy change occurring when a cluster of arbitrary size moves from one phase to

another. For a finite liquid drop in equilibrium with its vapor, this is done by virtually

transfering a cluster from the liquid drop to the vapor and evaluating the energy and

entropy changes associated with both the cluster in the vapor and the residual liquid

drop (or complement).

In this way, we generalize eq. (20) (at coexistence so that ∆µ = 0), valid for infinite

liquid-vapor equilibrium, to the case of a vapor in equilibrium with a finite liquid drop.

Fisher’s expressions for ∆EA(T ) and ∆SA(T ) can be written for a drop of size A0 in

equilibrium with its vapor as

∆EA(T ) = as [Aσ + (A0 − A)σ − Aσ
0 ] (35)
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and

∆SA(T ) =
as

Tc
[Aσ + (A0 − A)σ − Aσ

0 ] − τ ln

[

A(A0 − A)

A0

]

(36)

giving

nA(T ) = q0

[

A (A0 − A)

A0

]

−τ

exp
{

−
asε

T
[Aσ + (A0 − A)σ − Aσ

0 ]
}

(37)

which we call the generalized Fisher expression. This equation reduces to Eq. (20)

when A0 tends to infinity. Most importantly, it contains the parameters as and Tc of

the infinite system. Therefore, by fitting data from a finite system with Eq. (37), we

automatically obtain the parameters for the infinite system.

As an aside, we can rewrite Eq. (37) as

nA(T ) = n∞

A (T ) exp

(

A∆µfs

T

)

(38)

with n∞

A (T ) given by Eq. (20) at coexistence. This shows that the finite size of the drop

acts as an effective chemical potential which increases the vapor pressure [51] and is

given by

∆µfs = −
asε [(A0 − A)σ − Aσ

0 ] − Tτ ln
(

A0−A
A0

)

A
. (39)

Expanding this equation as a function of A/A0, which will be small for large liquid

drops, yields:

∆µfs ≃ asǫσAσ−1
0 −

Tτ

A0

(40)

which relates directly to the Gibbs-Thomson relation as seen in equation (34).

5.1. The complement and the lattice gas (Ising) model

In order to verify the complement method quantitatively, we apply it to the canonical

lattice gas (Ising) model [35, 36] in two and three dimensions with a fixed number of

occupied sites (up spins), i.e. a fixed mean occupation density 〈ρfixed〉 in the lattice gas

(equivalently, a fixed magnetization Mfixed Ising model) [53, 54]. For these calculations,

at a temperature of T = 0 all the spins form a single cluster of size A0
d (listed in Fig. 7)

chose such that it is much smaller than the lattice in which it is embedded. At higher

temperatures a drop (with size A0 < A0
d) coexists with a vapor made up of A0

d − A0

constituents; A0 depends on the temperature. Above the coexistence temperatures there

is only a dilute vapor consisting of all A0
d spins [54, 26].

We choose large lattices (i.e. large containers) with periodic boundary conditions

in order to minimize finite lattice effects, irrelevant to our study. For d = 2 we use a

square lattice of side L = 80 which leads to a shift in Tc of . 0.5% [55, 56]. For d = 3 we

use a simple cubic lattice of side L = 25 which leads to a shift in Tc of . 0.5% [57, 58].

We also performed 〈ρfree〉 calculations (standard lattice gas calculations where the

number of occupied sites is allowed to vary) for the same lattices as a benchmark in



The experimental liquid-vapor phase diagram of bulk nuclear matter 17

10
-5

10
-4

10
-3

10
-2

10
-1

1

10
-5

10
-4

10
-3

10
-2

10
-1

1

n A
(T

)/
q 0A

-τ

L = 80, Mfree

A=9
A=10
A=11
A=12
A=13
A=14

A=15
A=16
A=17
A=18
A=19
A=20
A=21

n A
(T

)/
q 0A

-τ

Ad
0 =  640

Ad
0 =  320

Ad
0 =  160

c0A
σε/T

n A
(T

)/
q 0A

-τ
ex

p(
A

∆µ
fs

/T
)

Ad
0 =  640

Ad
0 =  320

Ad
0 =  160

10
-5

10
-4

10
-3

10
-2

10
-1

1

0 2 4 6 8 10 12

10
-8

10
-6

10
-4

10
-2

1

10
-8

10
-6

10
-4

10
-2

1

n A
(T

)/
q 0A

-τ

L = 25, Mfree

A = 2.
.
.

A = 60

n A
(T

)/
q 0A

-τ

Ad
0 = 468

Ad
0 = 235

Ad
0 = 117

c0A
σε/T

n A
(T

)/
q 0A

-τ
ex

p(
A

∆µ
fs

/T
)

Ad
0 = 468

Ad
0 = 235

Ad
0 = 11710

-8

10
-6

10
-4

10
-2

1

0 2 4 6 8 10 12 14 16 18

Figure 7. Left: The cluster concentrations of the d = 2, L = 80 periodic boundary

condition square lattice for: 〈ρfree〉 calculations (top); 〈ρfixed〉 calculations with no

complement (middle); 〈ρfixed〉 calculations with the complement (bottom). The color

of the points reflect the size of the cluster. Right: results for the d = 3, L = 25 periodic

boundary condition simple cubic lattice. The color of the points reflect the size of the

cluster. For the 〈ρfixed〉, d = 3 calculations, only small clusters were present. Only the

top plots are the results of fits with free parameters. The middle and bottom plots

are not fits and were made with no free parameters. Here c0 = as.

order to differentiate effects of a finite lattice from those of a finite drop. The 〈ρfree〉

calculations emulate the vapor in coexistence with an infinite amount of liquid and thus

have no explicit drop and are free of any complement effect. The cluster distributions

of the 〈ρfree〉 calculations were fit with Eq. (20) with the free parameters Tc, as, σ, τ

and the normalization set by the value of τ from the fit as

q0 =
1

2ζ(τ − 1)
(41)

to insure that the value of the critical density (ρc = 1/2) is recovered. Table 3 shows that

the values of the Tc and τ returned by this procedure are within 1% of their established

values. The top panels of figure 7 shows that, just as we saw in section 4.3.1, the cluster

distributions collapse onto a single line by plotting nA(T )/q0A
−τ versus asA

σε/T .

However, plotting nA(T )/q0A
−τ versus asA

σε/T (i.e. without the complement
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- Onsager [59] this work theoretical values this work

- d = 2 d = 2 d = 3 d = 3

- L → ∞ L = 80 L → ∞ L = 25

Tc 2.26915 . . . 2.283 ± 0.004 4.51152 ± 0.00004 4.533 ± 0.002

σ 8/15 0.56 ± 0.01 0.63946 ± 0.0008 0.725 ± 0.003

τ 31/15 2.071 ± 0.002 2.209 ± 0.006 2.255 ± 0.001

Table 3. Fit results for 〈ρfree〉 calculations compared to accepted values found in the

literature.

correction) using the parameters in Table 3 for the clusters in the 〈ρfixed〉 calculations

shows much less data collapse. This is show in the middle panels of figure 7.

The data collapse is recovered for the clusters in the 〈ρfixed〉 calculations when

plotting nA(T )/q0A
−τ exp [A∆µfs/T ] versus asA

σε/T (with the complement correction

and again using the parameters in Table 3) as shown in the bottom panels of figure 7.

The improvement in data collapse is clear from a visual inspection of figure 7, but can be

quantified by constructing a χ2. Doing this shows that the addition of the complement

correction decreases, on average, the χ2 by a factor of six [26].

Furthermore, when the complement correction is applied to clusters from the 〈ρfixed〉

calculations, the data collapse to the same line as the data for the 〈ρfree〉 calculations.

This demonstrates that information about the infinite system is accessible in finite

systems when the effects of finite size are properly taken into account.

Finally, we emphasize that the middle and bottom panels of Fig. 7 do not show

fits, i.e. those plots were made with no free parameters.

5.2. The complement and the Lennard-Jones model

To study the finite size effects discussed above for a system of a liquid drop in

the Lennard-Jones system, molecular dynamics simulations were performed. The

systems considered contained 600 particles in a spherical container. The radius of the

container was 13.4rLJ ≤ R ≤ 24.3rLJ . The temperature range of the simulations was

0.53 ≤ T/Tc ≤ 0.73, the triple point of the system being at T/Tc = 0.52. The liquid

drop sizes generated by these conditions were in the range of 110 ≤ A0 ≤ 240. A total

of 30,000 configurations were sampled for 24 different energy–density combinations. A

sample realization from the simulation is shown in figure 8.

Figure 9 shows the scaled cluster yields from the simulations using the fit parameters

of the system studied with the Gibbs ensemble technique in section 4.2.2. The plot on

the left shows the scaling without the complement correction, whereas the one on the

right is with the complement correction. Droplets of such small size vividly demonstrate

the importance of the complement correction.
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Figure 8. A realization of a Lennard-Jones simulation showing a drop (the large

cluster at mid-height and towards the right) in equilibrium with a vapor (the

monomers, dimers, trimers, etc. surrounding the drop). The gray spheres show the

particles. Clusters are shown by particles connected with gray cylinders.

6. Coulomb effects and their elimination

So far, we have discussed liquid-vapor equilibria in terms of clusters, but without

considering the Coulomb effects which are ever present in nuclei and nuclear clusters.

We will consider these effects below.

The liquid drop model [11] considers nuclei as charged drops of a Van der Waals

like fluid. As mentioned above, the experimental characterization of cold bulk nuclear

matter can easily be achieved by setting the surface, symmetry, and Coulomb terms of

the liquid drop expression to zero and retaining just the volume term. This, together
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Figure 9. Cluster concentrations for the Lennard-Jones system for the liquid drop

calculations without using the complement correction (left) and the liquid drop

calculation with the complement (right). Here c0 = as.

with the independent measurement of nuclear radii (inferable from the surface and

Coulomb coefficients), defines the fundamental properties of cold bulk nuclear matter:

its binding energy and density at saturation.

In this way, the Coulomb interaction is “eliminated” from the picture in order to

dispose of what is properly perceived as a troublesome inessential divergence, while, for

better or worse, it remains all pervasive in the experimental realm.

The experimental extension to higher temperatures is also hampered by the

presence of the Coulomb interaction in a variety of ways.

In this section we consider the problem of the Coulomb interaction and the problem

of the “container” for the vapor phase and present a simple and natural solution to both

[27].

Many of the theoretical approaches to the Coulomb problem have been based upon

numerical simulations of finite lattice systems [2, 3, 60]. In nuclei Coulomb effects

become progressively more important with increasing A, Z and eventually, at A ≈ 60

they reverse the surface trend prevailing at small A values. Above A ≈ 60, the binding

energy per nucleon reaches a maximum and then progressively decreases with increasing

A.

One may wonder whether the role of the Coulomb interaction is merely that of

decreasing the binding energy. The long range nature of this force may compel us to

analyze its role in more detail in first order phase transitions. As will be shown below,

the problems are quite serious and threaten our ability to define a true first order phase

transition with any generality in the presence of such a force.

Let us introduce the Coulomb interaction in the problem of a drop and its vapor.
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Figure 10. Top left panel: the schematic potential of an uncharged and bound

particle (Q < 0) leaving a nucleus. Bottom left panel: the schematic potential of a

bound charged particle. The charged particle must overcome a Coulomb barrier Bc

in order to leave the nucleus. Right: The schematic potential of an unbound charged

particle.

The Coulomb interaction can be split into three parts:

(i) the drop self-energy;

(ii) the drop-vapor interaction energy; and

(iii) the vapor self-energy.

The drop self energy, for a finite bound or metastable drop, is easily calculated and does

not constitute a problem.

For the drop-vapor interaction, we consider a probe cluster which we can carry

from the interior of the drop to infinity. The potential energy V (r) experienced in the

process depends upon the particle’s charge/mass and is shown schematically in Fig. 10.

If the particle has zero charge (top panel of Fig. 10), a step is observed at the

droplet radius equal to the particle binding energy. For charges greater than zero, a

maximum V (Rc) = Bc is observed at the approximate distance of the two droplets in

contact at Rc. From there the potential decreases according to the Coulomb law and

settles down at infinity to a value equal to the binding energy of the particle, Q.

In this case, where we assume that any particle of any size is bound (Q < 0) and we

forget about problem (iii), there is no difficulty in defining a gas phase in equilibrium

with the droplet at infinity constituted by particles of all sizes whose abundance is

controlled by the respective binding energies in the standard way. The intervening

Coulomb barrier Bc does not alter the equilibrium, although it may slow its achievement.

In this case the vapor is constituted mainly of monomers and the coexistence pressure
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described by the Clapeyron equation

dp

dT
=

∆Hm
e

T∆V m
(42)

with ∆Hm
e suitably accounting for both surface and Coulomb terms, may be adequate

to describe the liquid to vapor transition and coexistence.

Let us now consider the case in which the probe particle becomes unbound to the

droplet above some Z value, due to the Coulomb interaction. Now the situation becomes

as depicted in Fig. 10. In this case the droplet is not stable and the ground state of

the system may consist of two or more pieces of the original drop at infinity. This is

true already at T = 0. Thus it is not possible to speak properly of this drop in statistical

equilibrium with its vapor, since the drop itself is metastable.

For a nucleus like gold, the ground state is at least as complicated as three fragments

of approximately 60 nucleons at infinity. This “true” ground state is over one hundred

MeV below the mass of the gold nucleus.

In any statistical calculation, at any reasonable temperature, one can expect

a liquid-like phase consisting of a configuration similar to the true ground state in

equilibrium with some vapor. A metastable gold-like drop is an immensely improbable

configuration because of the great energy chasm mentioned above. The probability P

of such a configuration can be surmised by the Boltzmann factor P ∝ exp(−∆E/T ),

where ∆E is the energy difference between the metastable state and the ground state.

For ∆E ≈ 135 MeV (which is approximately the value for Au and its true ground state)

and a temperature of 4 MeV we obtain P ≈ e−34 or about 2 × 10−15!

One might argue that our point is made from energetic rather than free energy F

considerations and that it may in fact be incorrect. After all, equilibria work both ways,

and typically one of the phases is at a lower energy than the other.

Let us consider, then, the transition from a condensed phase (liquid-like) to a

dilute phase (vapor-like). For an infinitesimal isothermal transfer, the variation of the

free energy must be zero

∆F = ∆E − T∆S = 0 (43)

where S is the entropy. As we go from liquid to vapor, ∆E > 0 for a typical fluid, but

this energy increase is compensated by an equivalent increase in entropy, due just to the

increase in molar volume.

However, if ∆E is negative, due to the Coulomb effect, we need a decrease in

entropy which is hardly compatible with expansion. The conclusion is that a statistical

equilibrium first order phase coexistence and phase transition is not definable for any

droplet that has unbound channels. Of course, the transition of the metastable droplet

to its “true” complex ground state hardly qualifies as a statistical phase transition. Thus

Coulomb effects seem truly devastating since they do not allow one to define nuclear

phase transitions unambiguously.

However, there may be a partial solution to this difficulty. If we consider the

emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is
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present. For T << Bc these channels may be considered effectively closed. Consequently

the unbound channels may not play a role on a suitably short time scale. Then a phase

transition may still be definable in an approximate way.

Let us consider now part 3) of the Coulomb energy, namely the vapor self energy.

Obviously, the self energy diverges for an infinite amount of vapor. For a dilute vapor,

we could consider a small portion such that the intrinsic self energy per nucleon is much

less than the temperature T . Alternatively, we could consider a finite box containing

a finite system. Unfortunately, at any distance smaller than infinity the result depends

annoyingly on the size (and shape!!) of the container and on whether the drop is

confined or not in a specified location of the container; a rather inelegant and non-

general situation leading to confusing questions about true equilibrium. In any case,

it is clear that overall, the Coulomb term makes the definition of phase coexistence

and phase transition intractable and ill-posed. In other words, any physical nuclear

reaction, fragmentation or otherwise, does not reflect in any clear way an underlying

phase transition.

6.1. Marginalization of the Coulomb problem

A solution to these difficulties can be arrived at by asking a slightly different question:

is there a way to experimentally characterize the nuclear phase transition as if the

Coulomb interaction were not there?

As mentioned above, any attempt to define and characterize both phases in the

presence of the Coulomb interaction depends (at the very least) on the shape and size

of a confining volume applied from without. This is artificial and lacks a desirable

generality. But nature actually provides this “confining volume” for us. Any particle

trying to leave the nucleus is “boxed in” by a barrier (Bs) which depends on the particle

under consideration and on the residual nucleus; i.e. the complement. The top of

this potential barrier is close in shape to the potential of two objects, particle and

complement, in near contact. The tops of these barriers are actually conditional saddle

points [61], conditional in the sense that the mass asymmetry is considered frozen.

According to standard transition state theory [62, 63, 64] all these saddles are in

statistical equilibrium with the droplet and the decay rates give direct information on

their population which is controlled by the Boltzmann factor exp(−Bs/T ). For large

enough Bs the observed experimental abundances are directly related to first chance

emission and thus to the transition state rates.

The barrier Bs is given by

Bs = Es
surface − Egs

surface + Es
Coulomb − Egs

Coulomb

= ∆Esurface + ∆ECoulomb (44)

where: Es
surface and Egs

surface are the surface energies of the saddle and ground state

respectively; Es
Coulomb and Egs

Coulomb are the Coulomb energies for the same two

configurations; and the two ∆E terms are the difference between the saddle and ground

state.
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Figure 11. A schematic representation of the Coulomb correction when the emitted

fragment is bound (left panels) and unbound (middle panels). In both cases one can

remove the Coulomb energy of the saddle configuration and calculate the Q value using

surface energies only (bottom panels). The resulting hypothetical gas will be composed

of fragments that are bound to the droplet (Qsurface < 0) for all fragment partitions.

The Coulomb energies can be easily estimated assuming a two touching spheres

configuration for the saddle and one sphere configuration for the droplet as shown in

Fig. 11. The decay rate R is then

R ∝ exp (−Bs) = exp− (∆Esurface + ∆ECoulomb) . (45)

The Coulomb effects factor out, so we can correct the particle emission rates by dividing

away the Boltzmann factor containing the Coulomb terms and be left with only the

rates or particle abundances pertaining to the decay of an uncharged drop, for which

all channels are bound by the extra surface energy given by

Qsurface = Es
surface − Egs

surface (46)

Figure 11 shows this schematically. This simple procedure allows us to set aside the

Coulomb problem and related difficulties with boxes and equilibration.

These corrected rates are now proportional to the effective partial concentration of

the hypothetical gas in equilibrium. This is a key result. We speak of a virtual gas phase

because it is not and needs not be present. This picture of a free evaporation of a
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droplet in vacuum neatly bypasses the need for a physical presence of the vapor. The

resulting situation is very much that described by the Fisher droplet model [33, 34] for

the composition of a saturated vapor in equilibrium with a liquid droplet.

Now the Fisher droplet model can be directly co-opted to describe the (first chance)

fragment abundances of a nuclear physics experiment after correction for Coulomb

effects. From it, it is easy to obtain the coexistence diagram for any nuclear system

deprived of the Coulomb interaction [65, 66]. This is in the same spirit as in nuclear

matter calculations in which neutrons and protons are considered as distinct particles,

but without any Coulomb interaction.

7. Emission in vacuum and the virtual vapor

The previous section touched briefly upon the questions we now address in greater

details. Those questions are: Where is the vapor? Does the nuclear system ever present

itself at some time like a mixed phase system with the vapor being somehow constrained

(as in lattice gas calculations [54, 26]), either statically or dynamically, to be in contact

with the liquid phase? If so, how is the nuclear vapor restrained? If not, what is the

meaning of vapor pressure, when clearly the system is freely decaying in vacuum against

no pressure?

To answer these questions, we present a physical picture of fragment production

from excited nuclei that will show: (a) how one can talk about coexistence without the

vapor being present; and (b) why an equilibrium description, such as Fisher’s theory, is

relevant to the free vacuum decay of a multifragmenting system [25].

7.1. The virtual vapor

First, let us consider a liquid in equilibrium with its saturated vapor. At equilibrium,

any particle evaporated by the liquid is restored on the average by the vapor bombarding

it. In other words, the outward evaporation flux from the liquid to the vapor is matched

by the inward condensation flux. This is true for any kind of evaporated particle. The

vapor acts, as it were, like a mirror that reflects the evaporated particles back into the

liquid.

One can probe the vapor by putting a detector in contact with it. However, since

the outward and inward fluxes are identically the same, one might just as well put the

detector in contact with the liquid itself. At equilibrium, the two measured fluxes must

be the same. Therefore, we do not need the vapor to be physically present in order

to characterize it completely. We can just as well study the evaporation of the liquid

and dispense with the surrounding saturated vapor. The vapor need not be there at

all. One speaks in these situations of a “virtual vapor”, realizing that first order phase

transitions depend exclusively upon the intrinsic properties of the two phases, and not

on their interaction. Of course, if the vapor is not there to restore the emitting system

with its return flux, evaporation will proceed and the system will cool.
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This naturally suggests the study of the emission of fragments from an excited

nucleus since the nucleus is a small drop of nuclear liquid evaporating in vacuum; i.e.

emitting fragments in vacuum.

Next, we specifically address fragment emission from an excited nucleus with a

time-honored assumption which we do not justify other than through the clarification

it brings to the experimental picture: we assume (just as in compound nuclear decay

[14]) that, after any prompt emission in the initial phase of the collision, the resulting

system relaxes in shape and density and thermalizes on a time scale shorter than its

thermal decay. At this point the excited nucleus emits particles in vacuum, according

to standard statistical decay rate theory. In this picture there is no surrounding vapor,

no confining box; there is no need for either. By studying the outward flux of the first

fragments emitted (first chance emission), we can study the nature of the vapor even

when it is absent (the virtual vapor) because of the equivalence of the evaporation and

condensation fluxes of a liquid in equilibrium with its saturated vapor.

Quantitatively, the concentration nA(T ) of any species A in the vapor is related to

the corresponding decay rate RA(T ) (or to the decay width ΓA) from the nucleus by

matching the evaporation and condensation fluxes

RA(T ) =
ΓA(T )

~
≃ nA(T ) 〈vA(T )4σinv(vA)〉 , (47)

where vA(T ) is the thermal velocity of the species A (of order
√

T/A) crossing the

nuclear interface represented by the cross section σinv (of order A
2/3
0 where A0 is the

mass number of the evaporating nucleus). The temperature T of the equilibrated,

excited nucleus when the first fragment is emitted can be estimated by the thermometric

equation of a Fermi gas and the calorimetrically mesaured excitation energy E∗

T =
√

E∗/a (48)

allowing for a weak dependence of a on T [67, 68], and remembering that the system is

most likely still in the Fermi strong degeneracy regime (where the temperature is much

less than the Fermi energy: T ≪ εF ).

This is the fundamental and simple connection between Eq. (47), the (compound

nucleus) decay rate, and Eq. (20). In the latter, one immediately recognizes in the

exponential the canonical expansion of the standard compound nucleus decay rate,

namely the Boltzmann factor exp(−B/T ) where B is the emission barrier which in

Eq. (20) is written with its surface factor isolated from all other components, e.g.

Coulomb [27], symmetry, finite size [26], etc. Thus, the vapor phase in equilibrium

can be completely characterized in terms of the decay rate.

The physical picture described above is valid instantaneously, but not globally.

The result of a global or successive evaporation in vacuum leads to abundances of

various species of emitted fragments that arise from a continuum of systems at different

temperatures [69]. This leads to complications in various thermometers: kinetic energy,

isotope ratios, etc. Our way to avoid this complication is to consider only fragments

that are emitted very rarely so that, if they are not emitted first, they are effectively
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not emitted at all. In other words, we consider only fragments that by virtue of their

large surface energy (and high charge), have a high emission barrier.

It is worth noting that the rapidly increasing Coulomb barrier with fragment charge

Z strongly enhances this effect. Thus a lower cut-off of about Z = 6 is used.

8. Experimental fragment distributions

Using the above physical picture and prescriptions to deal with the Coulomb force and

finite size effects, the fragment distributions from two types of experiments are analyzed

in this work.

One type of experiment gives rise to a standard “compound nucleus.” A compound

nucleus is formed when one nucleus impacts another nucleus and the two combine to form

a single, compound excited nucleus. The nucleon number and charge of the compound

nucleus is just the sum of the nucleon number and charge of the two colliding nuclei.

Energy and angular momentum can easily be calculated [70].

The other type of experiment deals with what is loosely called “multifragmentation”

[71, 72, 73, 74, 75, 76, 77, 78, 79, 65, 66, 9] In a multifragmentation experiment,

one nucleus is accelerated to a high velocity and impacts another nucleus. In the

multifragmentation experiments considered here, one of the colliding nuclei is much

larger than the other. The collision between nuclei in multifragmentation experiments

is more violent than the collisions in the compound nucleus experiments and instead of

the two nuclei combining to form a compound nucleus, the larger of the two nuclei has

nucleons ejected during the collision leaving an excited remnant with a smaller nucleon

number and charge than the initial nucleus. The more violent the collision, the greater

the excitation of the remnant, but the smaller the nucleon number and charge of the

remnant. This remnant can be considered as an equilibrated compound nucleus which

thermally decays by emitting nucleons and clusters. Analyses similar to that presented

here has been performed previously [80, 65, 66]. However, those efforts did not properly

take into account the Coulomb force and finite size effects.

8.1. Analysis

For both types of experiments it is assumed that the collisions produce an excited,

equilibrated remnant (hereafter the compound nucleus is also referred to as a remnant)

of radius rr consisting of Ar nucleons (Zr protons and Nr neutrons) at excitation energy

E∗

r with angular momentum
∣

∣

∣

~L
∣

∣

∣
. This is the initial state of the system, an excited heavy

nucleus that will emit neutrons and charged particles.

The analysis of the data leads to the characterization of the decaying compound

nucleus or remnant in terms of its mass Ar, charge Z, excitation energy E∗

r , angular

momentum
∣

∣

∣

~L
∣

∣

∣
and of the yield Y (Zr, Ar) of emitted fragments of charge Zf and

mass Af (the fragment mass number is corrected for secondary decay). The excitation

energy is transformed into a temperature via the Fermi gas approximation [67, 68].
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Contributions to the free energy of fragment formation that arise from the angular

momentum of the system are calculated. The data are then analyzed according to the

procedures illustrated above. Complete and in depth details of this analysis can be

found in reference [81].

The data from six different reactions (listed in Table 4) and three different

experiments were used and over 500 data points were fit with three (for the compound

nuclear data sets) or four (for the multifragmentation data sets) free parameters per

reaction (there were, on average, nearly 23 data points per free parameter). Charges

from 6 ≤ Zf ≤ 25 and excitation energies of 1.08 AMeV ≤ E∗

r ≤ 4.75 AMeV were used

in the analysis.

Table 4 shows the results for Tc from all the experiments. These values agree with

each other to within 3% and give an estimate of the critical temperature of bulk nuclear

matter as Tc = 17.9 ± 0.4 MeV. This value agrees well with theoretical predictions

[82, 83, 84, 7, 85].

Table 4. Estimates of the critical temperature from six different reactions.

Reaction Tc (MeV)
58Ni+12C→70Se 18.4 ± 0.3
64Ni+12C→76Se 18.0 ± 0.2

1 AGeV 84Kr+12C 17.5 ± 0.2

1 AGeV 139La+12C 18.3 ± 0.2

1 AGeV 197Au+12C 17.7 ± 0.1

1 GeV/c π+197Au 17.26 ± 0.02

Plotting the scaled ratio of the yields of a given fragment Y (Zr, Ar) as a function

of asA
σε/T collapses the measured fragment yields for any Af and E∗

r onto a single

curve [81]. This is shown in Figure 12. This figure shows that all the data from the

six reactions can be collapsed onto a single curve. The curve is, for all intents and

purposes, the liquid-vapor coexistence curve of bulk nuclear matter since the effects of

finite size, the Coulomb force, angular momentum and isospin have all been accounted

for and scaled out.

8.1.1. Constructing the phase diagram The above analysis provides us with the

critical temperature of nuclear matter and direct information about the liquid-vapor

coexistence curve. With Tc determined and additional work, it is possible to determine

the coexistence curve of nuclear matter that completely maps the liquid-vapor phase

diagram in (T ,ρ,p).

The first step is to determine the coexistence curve in reduced units:

p

pc
,

ρ

ρc
and

T

Tc
. (49)
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Figure 12. The scaled charge yields for all six reactions. Over 500 points are collapsed

onto a single curve which describes the behavior of bulk nuclear matter. The color

of the points show the charge of the fragments. The solid line shows the liquid-vapor

coexistence curve of bulk nuclear matter. Here Θ is an effective chemical potential

that depends on the effects of finite size, the Coulomb force, angular momentum and

isospin. See reference [81] for further details.

We recall that in Fisher’s theory the formation of clusters (or fragments) exhausts

all non-idealities of the vapor, so that the pressure and density can be obtained by

simple sums. The pressure is

p = T
∑

A

nA(T ) = T
∑

A

q0A
−τ exp

(

−
asA

σε

T

)

(50)

and at the critical point

pc = Tc

∑

A

nA(Tc) = Tcq0

∑

A

A−τ . (51)

The density is given by

ρ =
∑

A

AnA(T ) =
∑

A

q0A
1−τ exp

(

−
asA

σε

T

)

(52)



The experimental liquid-vapor phase diagram of bulk nuclear matter 30

T/Tc

ρ l,v
/ρ

c

ρv/ρc

ρl/ρc

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 0.2 0.4 0.6 0.8 1

Figure 13. The reduced density-reduced temperature coexistence curve for bulk

nuclear matter. Empty squares show the vapor branch. Empty circles show the liquid

branch. Solid curves show the results of the fit to the vapor branch. Dotted curves

show the extrapolation of that fit. The dashed line shows the extrapolation of the law

of rectilinear diameter. See text for details.

and at the critical point

ρc =
∑

A

AnA(Tc) = q0

∑

A

A1−τ . (53)

Using the reduced quantities removes the unknown normalization q0. All other

quantities in the above sums are known. The errors associated with Tc, τ and σ are

propagated to generate errors on the reduced quantities.

8.1.2. Reduced density The empty squares in Figure 13 shows the vapor branch of

the ρ-T phase diagram of nuclear matter, albeit in reduced form. The empty circles in

Figure 13 show the liquid branch which was determined as follows. First, Guggenheim’s

universal function describing the reduced ρl,v/ρc-T/Tc phase diagram [23]

ρl,v

ρc
= 1 + d1ε ± dβε

β (54)

was fit to the empty squares on Figure 13 from 0.55Tc ≤ T ≤ Tc which is roughly the

range over which Guggenheim’s function describes dozens of fluids: from the triple point

to the critical point. Here the critical exponent β is [33, 34, 45]

β =
τ − 2

σ
= 0.3265 ± 0.0001 (55)

and d1 and dβ are left as fit parameters. The vapor branch is described by the Eq. (54)

with the minus sign and the liquid branch is described by the Eq. (54) with the plus

sign. The solid curve on Figure 13 shows the results from the fitting procedure.
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Figure 14. Left: The pressure-temperature coexistence curve for bulk nuclear matter.

Right: The temperature-density coexistence curve for bulk nuclear matter. Errors are

shown for selected points to give an idea of the error on the entire coexistence curve.

Dotted curves on Figure 13 show extrapolations for T < 0.55Tc. The extrapolation

for the vapor branch shows unphysical behavior with ρv/ρc < 0 for T/Tc < 0.25, thus

some care must be taken when determining the ρl/ρc-T/Tc coexistence curve at low

temperatures. The ρv/ρc-T/Tc coexistence curve at low temperatures has already been

determined from equations (52) and (53).

To determine the liquid branch of the coexistence curve for low temperatures we

start with the law of rectilinear diameter which is
ρl + ρv

2ρc

= 1 + d1ε. (56)

We extrapolate this linear function in ε from T = 0.55Tc to T = 0. This is shown by

the dashed line in Figure 13. We then use that extrapolation and the values of ρv/ρc

computed via the sums in equations (52) and (53) (open circles on Figure 13) to solve

for ρl/ρc at low temperatures by “reflecting” them about the line defined by Eq. (56).

Thus
ρl

ρc
= 2 + 2d1ε −

ρv

ρc
. (57)

The results are shown by empty squares on Figure 13. The error bars on ρl/ρc are equal

to the error bars on ρv/ρc.

8.1.3. Density To obtain a ρl,v-T coexistence curve in a non-reduced form (e.g.

temperature in units of MeV and density in units of nucleons per cubic fermi) we first

multiply the temperature axis by Tc. Errors on the temperature scale are then given

by:

δT = δTc

(

T

Tc

)

. (58)
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To determine the density in units of nucleons per cubic fermi we note that at T = 0

the density of nuclear matter should be approximately the density observed in unexcited

nuclei. Using the value of r0 = 1.2181 fm the density of nuclear matter at T = 0 is

ρl (T = 0) =
3

4πr3
0

≈ 0.132A/fm3. (59)

That value sets the scale on the density axis. The results are shown in Figure 14 and

we obtain a critical density value of ρc = 0.06 ± 0.02 A/fm3 which agrees well with

theoretical efforts [83, 84, 7, 85].

8.1.4. Pressure To determine the coexistence curve for pressure as a function of

temperature we again start with the reduced quantities and obtain p/pc as a function of

T/Tc by performing the sums in equations (50) and (51). We then determine the value

of pc from the compressibility at the critical point which is defined as

Zc =
pc

ρcTc

. (60)

For fluids this is a universal quantity and is Zc = 0.277 ± 0.004 [81]. Combining

equations (51), (53) and (60) one sees that the compressibility at the critical point is

just a ratio of two Riemann ζ-functions [86, 87]

Zc =
ζ (τ − 1)

ζ (τ)
= 0.276. (61)

However, using the error on τ gives Zc = 0.28 ± 0.01. We use this value of Zc in

combination with the values of Tc and ρc determined above to obtain a value for the

pressure at the critical point of 0.3 ± 0.1MeV/fm3 which agrees well with theoretical

efforts [84, 85]. Here the error arise from the errors on Tc and ρc. Now to obtain the

pressure in units of MeV/fm3 we merely multiply p/pc by the value of pc obtained above.

The error on the pressure is given by

δp = δpc
p

pc
. (62)

Figure 14 shows these results.

9. Conclusion

Our goal in this paper was to identify and employ an experimental method applicable

to suitably chosen nuclear reactions in order to extract that liquid-vapor phase diagram

of infinite, uncharged, symmetric nuclear matter. The usual thermodynamical methods

being obviously not accessible, we concentrated on the possibility of using cluster mass

distributions at various temperatures and analyzing them according to Fisher’s cluster

theory. This method has two advantages. On one hand it can be tested against models

where the phase diagram is independently known. On the other, strongly thermalized

nuclear reactions produce clusters that are readily measured.
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A Fisher analysis of the cluster distributions obtained for equilibrated Ising and

Lennard-Jones simulations showed that we could indeed recover satisfactorily the phase

diagrams of both systems.

The application to nuclei, however, presented three additional difficulties: the

finite size of nuclear systems, the presence of the Coulomb force, and the absence of

a stationary vapor phase coexisting with the liquid.

The finite size problem was solved by a very simple and effective approach, the

complement approach. The free energy associated with the extraction of a cluster from

a finite drop rather than from the infinite liquid led us to a generalization of the Fisher

formalism. By means of it we could fit the cluster distributions in equilibrium with a

finite drop and extract the relevant parameters pertaining to the infinite system. This

was tested on Ising and Lennard-Jones vapors in equilibrium with finite drops with

excellent results.

The Coulomb effects were eliminated by considering the cluster decay rates of a

charged system according to the transition state method. The Coulomb term could

be factored out and divided away leaving a corrected decay rate for the corresponding

uncharged system. This rate can be directly related to the concentration of the vapor

in equilibrium.

Finally, the lack of a stationary vapor phase was obviated by realizing that

the thermal decay rates of the uncharged system could be directly related to the

corresponding concentrations of the saturated vapor. Having developed and tested in so

far as possible this systematic approach, we proceeded to apply it to a series of nuclear

reactions, low energy compound nucleus decay and higher energy multifragmentation.

Low energy compound nuclear reactions were particularly important because the

mass, charge, excitation energy and angular momentum of the decaying system could

be easily determined.

The resulting analysis led to a very consistent set of parameters, which allowed us

to achieve the reconstruction of the desired phase diagram.
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